Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609074

RESUMO

The tropical brown dog tick, Rhipicephalus linnaei, is a tick of much medical, veterinary, and zoonotic importance. This tick has a nearly world-wide distribution due to its ability to survive and propagate in kennels and houses. Rhipicephalus linnaei is the vector of Ehrlichia canis, the causative agent of canine monocytic ehrlichiosis, an often debilitating disease of canids and, occasionally, humans. To prevent incursion of E. canis into Australia, dogs entering Australia have been required to have a negative immunofluorescence antibody test for E. canis. In May 2020 however, E. canis was detected in Western Australia. The detection of E. canis in Australia prompted disease investigation and concerted surveillance for R. linnaei and E. canis in regions across Australia. These investigations revealed that R. linnaei was established far beyond the previously recognised geographic limits of this tick. In the present paper, using records from various collections, published data, and data from our network of veterinarian collaborators and colleagues, we update the current geographic limits of R. linnaei in Australia. Our analyses revealed that the geographic range of R. linnaei in Australia is much wider than was previously supposed, particularly in Western Australia, and in South Australia. We also map, for the first time, where E. canis has been detected in Australia. Last, we discuss the possible routes of incursion and subsequently the factors which may have aided the spread of E. canis in Australia which led to the establishment of this pathogen in Australia.

2.
Acta Trop ; 254: 107197, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554993

RESUMO

Dermacentor (Indocentor) auratus Supino, 1897 occurs in many regions of Southeast Asia and South Asia. In many regions of Southeast Asia and South Asia, targeted tick sampling and subsequent screening of collected D. auratus ticks have detected pathogenic bacteria and viruses in D. auratus. These disease-causing pathogens that have been detected in D. auratus include Anaplasma, Bartonella, Borrelia, Rickettsia (including spotted fever group rickettsiae), African swine fever virus, Lanjan virus, and Kyasanur forest disease virus. Although D. auratus predominantly infests wild pigs, this tick is also an occasional parasite of humans and other animals. Indeed, some 91 % of human otoacariasis cases in Sri Lanka were due to infestation by D. auratus. With the propensity of this tick to feed on multiple species of hosts, including humans, and the detection of pathogenic bacteria and viruses from this tick, D. auratus is a tick of medical, veterinary, and indeed zoonotic concern. The geographic range of this tick, however, is not well known. Therefore, in the present paper, we used the species distribution model, BIOCLIM, to project the potential geographic range of D. auratus, which may aid pathogen and tick-vector surveillance. We showed that the potential geographic range of D. auratus is far wider than the current geographic distribution of this tick, and that regions in Africa, and in North and South America seem to have suitable climates for D. auratus. Interestingly, in Southeast Asia, Borneo and Philippines also have suitable climates for D. auratus, but D. auratus has not been found in these regions yet despite the apparent close proximity of these regions to Mainland Southeast Asia, where D. auratus occurs. We thus hypothesize that the geographic distribution of D. auratus is largely dependent on the movement of wild pigs and whether or not these wild pigs are able to overcome dispersal barriers. We also review the potential pathogens and the diseases that may be associated with D. auratus and provide an updated host index for this tick.

3.
Parasit Vectors ; 17(1): 139, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500136

RESUMO

BACKGROUND: Amblyomma is the third most diversified genus of Ixodidae that is distributed across the Indomalayan, Afrotropical, Australasian (IAA), Nearctic and Neotropical biogeographic ecoregions, reaching in the Neotropic its highest diversity. There have been hints in previously published phylogenetic trees from mitochondrial genome, nuclear rRNA, from combinations of both and morphology that the Australasian Amblyomma or the Australasian Amblyomma plus the Amblyomma species from the southern cone of South America, might be sister-group to the Amblyomma of the rest of the world. However, a stable phylogenetic framework of Amblyomma for a better understanding of the biogeographic patterns underpinning its diversification is lacking. METHODS: We used genomic techniques to sequence complete and nearly complete mitochondrial genomes -ca. 15 kbp- as well as the nuclear ribosomal cluster -ca. 8 kbp- for 17 Amblyomma ticks in order to study the phylogeny and biogeographic pattern of the genus Amblyomma, with particular emphasis on the Neotropical region. The new genomic information generated here together with genomic information available on 43 ticks (22 other Amblyomma species and 21 other hard ticks-as outgroup-) were used to perform probabilistic methods of phylogenetic and biogeographic inferences and time-tree estimation using biogeographic dates. RESULTS: In the present paper, we present the strongest evidence yet that Australasian Amblyomma may indeed be the sister-group to the Amblyomma of the rest of the world (species that occur mainly in the Neotropical and Afrotropical zoogeographic regions). Our results showed that all Amblyomma subgenera (Cernyomma, Anastosiella, Xiphiastor, Adenopleura, Aponomma and Dermiomma) are not monophyletic, except for Walkeriana and Amblyomma. Likewise, our best biogeographic scenario supports the origin of Amblyomma and its posterior diversification in the southern hemisphere at 47.8 and 36.8 Mya, respectively. This diversification could be associated with the end of the connection of Australasia and Neotropical ecoregions by the Antarctic land bridge. Also, the biogeographic analyses let us see the colonization patterns of some neotropical Amblyomma species to the Nearctic. CONCLUSIONS: We found strong evidence that the main theater of diversification of Amblyomma was the southern hemisphere, potentially driven by the Antarctic Bridge's intermittent connection in the late Eocene. In addition, the subgeneric classification of Amblyomma lacks evolutionary support. Future studies using denser taxonomic sampling may lead to new findings on the phylogenetic relationships and biogeographic history of Amblyomma genus.


Assuntos
Genoma Mitocondrial , Ixodidae , Carrapatos , Animais , Ixodidae/genética , Filogenia , Amblyomma
4.
Zootaxa ; 5410(1): 91-111, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480255

RESUMO

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.


Assuntos
Carrapatos , Animais , Queensland , Amblyomma , Papua Nova Guiné , Austrália
5.
Med Vet Entomol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469668

RESUMO

We used entire mitochondrial (mt) genome sequences (14.5-15 kbp) to resolve the phylogeny of the four main lineages of the Haematobothrion ticks: Alloceraea, Archaeocroton, Bothriocroton and Haemaphysalis. In our phylogenetic trees, Alloceraea was the sister to Archaeocroton sphenodonti, a tick of an archetypal reptile, the tuatara, from New Zealand, to the exclusion of the rest of the species of Haemaphysalis. The mt genomes of all four of the Alloceraea species that have been sequenced so far had a substantial insert, 132-312 bp, between the tRNA-Glu (E) gene and the nad1 gene in their mt genomes. This insert was not found in any of the other eight subgenera of Haemaphysalis. The mt genomes of 13 species of Haemaphysalis from NCBI GenBank were added to the most recent data set on Haemaphysalis and its close relatives to help resolve the phylogeny of Haemaphysalis, including five new subgenera of Haemaphysalis not previously considered by other authors: Allophysalis (structurally primitive), Aboimisalis (structurally primitive), Herpetobia (structurally intermediate), Ornithophysalis (structurally advanced) and Segalia (structurally advanced). We elevated Alloceraea Schulze, 1919 to the status of genus because Alloceraea Schulze, 1919 is phylogenetically distinct from the other subgenera of Haemaphysalis. Moreover, we propose that the subgenus Allophysalis is the sister to the rest of the Haemaphysalis (14 subgenera) and that the 'structurally primitive' subgenera Hoogstraal and Kim comprise early diverging lineages. Our matrices of the pairwise genetic difference (percent) of mt genomes and partial 16S rRNA sequences indicated that the mt genome sequence of Al. kitaokai (gb# OM368280) may not be Al. kitaokai Hoogstraal, 1969 but rather another species of Alloceraea. In a similar way, the mt genome sequence of H. (Herpetobia) nepalensis Hoogstraal, 1962 (gb# NC_064124) was only 2% genetically different to that of H. (Allophysalis) tibetensis Hoogstraal, 1965 (gb# OM368293): this indicates to us that they are the same species. Alloceraea cretacea may be better placed in a genus other than Alloceraea Schulze, 1919. Reptiles may have been the host to the most recent common ancestor of Archaeocroton and Alloceraea.

6.
Int J Parasitol ; 53(1): 43-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462559

RESUMO

We studied 22,840 cases of tick paralysis in dogs and cats that were attributable to infestation with the eastern paralysis tick, Ixodes holocyclus. We report that the mortality rates from the holocyclotoxins of the tick or from euthanasia due to complications arising from tick paralysis in dogs and cats were 10% and 8%, respectively. The distribution of cases of tick paralysis among the 52 weeks of 22 years (1999 to 2020, inclusive) in four regions along the eastern coast of Australia revealed much about how the life-cycle of this tick varied among regions. The four regions in our study were: (i) Cairns, Innisfail, and surrounding postcodes in Far North Queensland; (ii) South East Queensland; (iii) Northern Beaches of Sydney in New South Wales; and (iv) the Shire of East Gippsland in Victoria. We found that the season of tick paralysis started earlier in more northerly latitudes than in more southerly latitudes. We also found that Victoria has two seasons of tick paralysis, one from approximately the third week of February to the first week of May, and another from approximately the third week of September to the third week of December, whereas all of the other regions we studied in eastern Australia only had one season of tick paralysis. When we studied the two seasons of tick paralysis in Victoria, we found a statistically significant negative correlation between the number of cases of tick paralysis between the two seasons: the more cases in one season, the fewer the cases in the next season. One possible explanation for the negative correlation may be immunity to I. holocyclus acquired by dogs and cats in the first season.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodes , Paralisia por Carrapato , Gatos , Animais , Cães , New South Wales/epidemiologia , Vitória , Queensland/epidemiologia , Estações do Ano , Paralisia por Carrapato/epidemiologia , Paralisia por Carrapato/veterinária , Doenças do Cão/epidemiologia
7.
Ticks Tick Borne Dis ; 14(2): 102070, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36455382

RESUMO

Hoogstraal and Kim (1985) proposed from morphology, three groups of Haemaphysalis subgenera: (i) the "structurally advanced"; (ii) the "structurally intermediate"; and (iii) the "structurally primitive" subgenera. Nuclear gene phylogenies, however, did not indicate monophyly of these morphological groups but alas, only two mitochondrial (mt) genomes from the "structurally intermediate" subgenera had been sequenced. The phylogeny of Haemaphysalis has not yet been resolved. We aimed to resolve the phylogeny of the genus Haemaphysalis, with respect to the subgenus Alloceraea. We presented 15 newly sequenced and annotated mt genomes from 15 species of ticks, five species of which have not been sequenced before, and four new 18S rRNA and 28S rRNA nuclear gene sequences. Our datasets were constructed from 10 mt protein-coding genes, cox1, and the 18S and 28S nuclear rRNA genes. We found a 132-bp insertion between tRNA-Glu (E) gene and the nad1 gene in the mt genome of Haemaphysalis (Alloceraea) inermis that resembles insertions in H. (Alloceraea) kitaokai and Rhipicephalus (Boophilus) geigyi. Our mt phylogenies had the three species of Amblyomma (Aponomma) we sequenced embedded in the main clade of Amblyomma: Am. (Aponomma) fimbriatum, Am. (Aponomma) gervaisi and Am. (Aponomma) latum. This is further support for the hypothesis that the evolution of eyes appears to have occurred in the most-recent-common-ancestor of Amblyocephalus (i.e. Amblyomminae plus Rhipicephalinae) and that eyes were subsequently lost in the most-recent-common-ancestor of the subgenus Am. (Aponomma). Either Africaniella transversale or Robertsicus elaphensis, or perhaps Af. transversale plus Ro. elaphensis, appear to be the sister-group to the rest of the metastriate Ixodida. Our cox1 phylogenies did not indicate monophyly of the "structurally primitive", "structurally intermediate" nor the "structurally advanced" groups of Haemaphysalis subgenera. Indeed, the subgenus Alloceraea may be the only monophyletic subgenus of the genus Haemaphysalis sequenced thus far. All of our mt genome and cox1 phylogenies had the subgenus Alloceraea in a clade that was separate from the rest of the Haemaphysalis ticks. If Alloceraea is indeed the sister to the rest of the Haemaphysalis subgenera this would resonate with the argument of Hoogstraal and Kim (1985), that Alloceraea was a subgenus of "primitive" Haemaphysalis. Alectorobius capensis from Japan had a higher genetic-identity to A. sawaii, which was also from Japan, than to the A. capensis from South Africa. This indicates that A. capensis from Japan may be a cryptic species with respect to the A. capensis from South Africa.


Assuntos
Genoma Mitocondrial , Ixodidae , Rhipicephalus , Animais , Ixodidae/genética , Filogenia , Genes de RNAr , Rhipicephalus/genética , Amblyomma/genética
8.
Zootaxa ; 5325(4): 529-540, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220895

RESUMO

A new subgenus, Australixodes n. subgen., is described for the kiwi tick, Ixodes anatis Chilton, 1904. The subgenus Coxixodes Schulze, 1941 is validated for the platypus tick, Ixodes (Coxixodes) ornithorhynchi Lucas, 1846, sister group of the subgenus Endopalpiger Schulze, 1935. A phylogeny from mitochondrial genomes of 16 of the 22 subgenera of Ixodes (32 spp.) indicates, for the first time, the relationships of the subgenera of Ixodes Latreille, 1795, the largest genus of ticks.


Assuntos
Genoma Mitocondrial , Ixodes , Ixodidae , Animais , Ixodes/genética , Ixodidae/genética , Filogenia
9.
Ticks Tick Borne Dis ; 12(5): 101758, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153869

RESUMO

The southern paralysis tick, Ixodes cornuatus, is a tick of veterinary and medical importance in Australia. We use two methods, CLIMEX, and an envelope-model approach which we name the 'climatic-range method' to study the climatic requirements of I. cornuatus and thus to attempt to account for the geographic distribution of I. cornuatus. CLIMEX and our climatic-range method allowed us to account for 94% and 97% of the records of I. cornuatus respectively. We also studied the host preferences of I. cornuatus which we subsequently used in conjunction with our species distribution methods to account for the presence and the absences of I. cornuatus across Australia. Our findings indicate that the actual geographic distribution of I. cornuatus is smaller than the potential geographic range of this tick, and thus, that there are regions in Australia which may be suitable for I. cornuatus where this tick has not been recorded. Although our findings indicate that I. cornuatus might be able to persist in these currently unoccupied regions, our findings also indicate that the potential geographic range of I. cornuatus may shrink by 51 to 76% by 2090, depending on which climate change scenario comes to pass.


Assuntos
Distribuição Animal , Mudança Climática/estatística & dados numéricos , Marsupiais/parasitologia , Modelos Estatísticos , Animais , Austrália , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Humanos , Ixodes , Mamíferos/parasitologia , Paralisia por Carrapato/epidemiologia , Paralisia por Carrapato/veterinária
10.
Int J Parasitol ; 51(4): 241-249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513402

RESUMO

The eastern paralysis tick, Ixodes holocyclus, is an ectoparasite of medical and veterinary importance in Australia. The feeding of I. holocyclus is associated with an ascending flaccid paralysis which kills many dogs and cats each year, with the development of mammalian meat allergy in some humans, and with the transmission of Rickettsia australis (Australian scrub typhus) to humans. Although I. holocyclus has been well studied, it is still not known exactly why this tick cannot establish outside of its present geographic distribution. Here, we aim to account for the presence as well as the absence of I. holocyclus in regions of Australia. We modelled the climatic requirements of I. holocyclus with two methods, CLIMEX, and a new envelope-model approach which we name the 'climatic-range method'. These methods allowed us to account for 93% and 96% of the geographic distribution of I. holocyclus, respectively. Our analyses indicated that the geographic range of I. holocyclus may not only shift south towards Melbourne, but may also expand in the future, depending on which climate-change scenario comes to pass.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodes , Animais , Austrália , Gatos , Cães , Hipersensibilidade Alimentar , Paralisia , Rickettsia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...